benchmark.dataset
- class Yandex(root: str, name: str, transform: Callable | None = None, pre_transform: Callable | None = None, force_reload: bool = False) None [source]
Bases:
InMemoryDataset
- Paper:
A critical look at the evaluation of GNNs under heterophily: are we really making progress?
- Ref:
- property raw_file_names: str[source]
The name of the files in the
self.raw_dir
folder that must be present in order to skip downloading.
- class LINKX(root: str, name: str, transform: Callable | None = None, pre_transform: Callable | None = None, force_reload: bool = False) None [source]
Bases:
InMemoryDataset
- Paper:
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
- Ref:
- _dataset_drive_url = {'pokec.mat': '1dNs5E7BrWJbgcHeQ_zuy5Ozp2tRCWG0y', 'snap-patents.mat': '1ldh23TSY1PwXia6dU0MYcpyEgX-w3Hia', 'twitch-gamer_edges.csv': '1XLETC6dG3lVl7kDmytEJ52hvDMVdxnZ0', 'twitch-gamer_features.csv': '1fA9VIIEI8N0L27MSQfcBzJgRQLvSbrvR', 'wiki_edges.pt': '14X7FlkjrlUgmnsYtPwdh-gGuFla4yb5u', 'wiki_features.pt': '1ySNspxbK-snNoAZM7oxiWGvOnTRdSyEK', 'wiki_views.pt': '1p5DlVHrnFgYm3VsNIzahSsvCD424AyvP', 'yelp-chi.mat': '1fAXtTVQS4CfEk4asqrFw9EPmlUPGbGtJ'}
- _splits_drive_url = {'pokec_splits.npy': '1ZhpAiyTNc0cE_hhgyiqxnkKREHK7MK-_', 'snap-patents_splits.npy': '12xbBRqd8mtG_XkNLH8dRRNZJvVM4Pw-N'}
- property raw_file_names: str[source]
The name of the files in the
self.raw_dir
folder that must be present in order to skip downloading.
- class FB100(root: str, name: str, transform: Callable | None = None, pre_transform: Callable | None = None, force_reload: bool = False) None [source]
Bases:
InMemoryDataset
- property raw_file_names: str[source]
The name of the files in the
self.raw_dir
folder that must be present in order to skip downloading.
- class Grid2D(root, name, transform=None, pre_transform=None)[source]
Bases:
InMemoryDataset
- property raw_file_names[source]
The name of the files in the
self.raw_dir
folder that must be present in order to skip downloading.
- T_insert(transform, new_t: BaseTransform, index=-1) Compose [source]
- resolve_data(args: Namespace, dataset: Dataset) Data [source]
Acquire data and properties from dataset.
- Parameters:
- Returns:
data (
Data
) – The resolved PyG data object from the dataset.- Updates:
- resolve_split(data_split: str, data: Data) Data [source]
Apply data split masks.
- Parameters:
data_split (
str
) –Index of dataset split, formatted as
scheme_split
orscheme_split_seed
.scheme='Random'
: Random split,split
istrain/val/test
ratio.scheme='Stratify'
: Stratified split,split
istrain/val/test
ratio.scheme='Original'
: Original split,split
is the index of split.
data (
Data
) – PyG data object containing the dataset and its attributes.
- Returns:
data (
Data
) – The updated PyG data object with split masks (train/val/test).